5 research outputs found

    A Measure of SRS/SRT Plan Quality: Quantitative Limits for Intermediate Dose Spill (R50%) in Linac-Based Delivery

    Get PDF
    Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) of multiple cranial targets using a single isocenter on conventional C-arm linear accelerators are rapidly developing clinical techniques. However, no universal guidelines for acceptable intermediate dose spill limits are currently available or widely accepted. In this work, we propose an intermediate dose spill guidance range for cranial SRS/SRT delivered on C-arm linacs with MLC collimation for single PTV plans and single isocenter multiple target plans with PTV volumes in the range 0.02–57.9 cm3. We quantify intermediate dose spill with the R50% metric (R50% = volume of 50% of prescription isodose cloud / volume of PTV) and test the proposed range using three clinical data sets, containing both 6 MV and 10 MV beams, previously published by other authors. Our proposed lower limit of R50% (LowerR50%) and upper limit of acceptable R50% (UpperR50%) bound over 90% of the clinical data used in this study, yet still provide a challenging benchmark for optimization and plan assessment of linac-based, MLC collimated SRS/SRT

    An Analytical Expression for R50% Dependent on PTV Surface Area and Volume: A Cranial SRS Comparison

    Get PDF
    The intermediate dose spill for a stereotactic radiosurgery (SRS) plan can be quantified with the metric R50%, defined as the 50% isodose cloud volume (VIDC50%) divided by the volume of the planning target volume (PTV). By coupling sound physical principles with the basic definition of R50%, we derive an analytical expression for R50% for a spherical PTV. Our analytical expression depends on three quantities: the surface area of PTV (SAPTV), the volume of PTV (VPTV), and the distance of dose drop-off to 50% (Δr). The value of ∆r was obtained from a simple set of cranial phantom plan calculations. We generate values from our analytical expression for R50% (R50%Analytic) and compare the values to clinical R50% values (R50%Clinical) extracted from a previously published SRS data set that spans the VPTV range from 0.15 to 50.1 cm3. R50%Analytic is smaller than R50%Clinical in all cases by an average of 15% ± 7%, and the general trend of R50%Clinical vs VPTV is reflected in the same trend of R50%Analytic. This comparison suggests that R50%Analytic could represent a theoretical lower limit for the clinical SRS data; further investigation is required to confirm this. R50%Analytic could provide useful guidance for what might be achievable in SRS planning

    A Dose Falloff Gradient Study in RapidArc Planning of Lung Stereotactic Body Radiation Therapy

    Get PDF
    Introduction: Radiation Therapy Oncology Group (RTOG) report #0813 and 0915 recommends using D2cm and R50% as plan quality metrics for evaluation of normal tissue sparing in stereotactic body radiation therapy (SBRT) of lung lesion. This study introduces dose falloff gradient (DFG) as a tool for analyzing the dose beyond the planning target volume (PTV) extending into normal tissue structures. In ascertaining the impact of PTV size and SBRT planning techniques in DFG, this study questions the independence of the RTOG recommended metrics. Materials and Methods: In this retrospective study, 41 RapidArc lung SBRT plans with 2 or 3 complete or partial arcs were analyzed. PTV volumes ranged between 5.3 and 113 cm3 and their geographic locations were distributed in both lungs. 6MV, 6 MV-FFF, 10 MV, or 10 MV-FFF energies were used. RTOG-0915 metrics conformity index, homogeneity index, D2cm, R50%, and HDloc were evaluated. DFG was computed from the mean and maximum dose in seven concentric 5 mm wide rings outside the PTV. DFG was investigated against the volume of normal lung irradiated by 50% isodose volume. Treatment plans with alternate energy and couch rotations were generated. Results: The dose falloff beyond PTV was modeled using a double exponential fit and evaluated for relationship with intermediate lung dose. Photon energy and beam configuration had a minimal impact on the dose falloff outside. The product of normalized D2cm and R50% was estimated to have a slowly varying value. Conclusions: Dose falloff outside PTV has been studied as a function of radial distance and ascertained by intermediate dose to normal lung. DFG can serve as a complementary plan quality metric

    A dose falloff gradient study in RapidArc planning of lung stereotactic body radiation therapy

    Get PDF
    Introduction: Radiation Therapy Oncology Group (RTOG) report #0813 and 0915 recommends using D2cmand R50%as plan quality metrics for evaluation of normal tissue sparing in stereotactic body radiation therapy (SBRT) of lung lesion. This study introduces dose falloff gradient (DFG) as a tool for analyzing the dose beyond the planning target volume (PTV) extending into normal tissue structures. In ascertaining the impact of PTV size and SBRT planning techniques in DFG, this study questions the independence of the RTOG recommended metrics. Materials and Methods: In this retrospective study, 41 RapidArc lung SBRT plans with 2 or 3 complete or partial arcs were analyzed. PTV volumes ranged between 5.3 and 113 cm3 and their geographic locations were distributed in both lungs. 6MV, 6 MV-FFF, 10 MV, or 10 MV-FFF energies were used. RTOG-0915 metrics conformity index, homogeneity index, D2cm, R50%, and HDlocwere evaluated. DFG was computed from the mean and maximum dose in seven concentric 5 mm wide rings outside the PTV. DFG was investigated against the volume of normal lung irradiated by 50% isodose volume. Treatment plans with alternate energy and couch rotations were generated. Results: The dose falloff beyond PTV was modeled using a double exponential fit and evaluated for relationship with intermediate lung dose. Photon energy and beam configuration had a minimal impact on the dose falloff outside. The product of normalized D2cmand R50%was estimated to have a slowly varying value. Conclusions: Dose falloff outside PTV has been studied as a function of radial distance and ascertained by intermediate dose to normal lung. DFG can serve as a complementary plan quality metric
    corecore